Lubricants (Feb 2025)

Tribological Behavior of Anodized Aluminum Oxide (AAO) Under the Addition of PAO6 Lubrication with Nano-Alumina

  • Marina C. Vasco,
  • Rodrigo L. Villanova,
  • Giuseppe Pintaude

DOI
https://doi.org/10.3390/lubricants13030097
Journal volume & issue
Vol. 13, no. 3
p. 97

Abstract

Read online

Anodizing can generate porous wear-resistant layers, which can act as reservoirs for gradually releasing lubricants. Studies on the formation of zinc dialkyl dithiophosphate (ZDDP) tribofilms in non-ferrous metals are relatively rare. Furthermore, adding nanoparticles can improve wear resistance in various applications. This investigation aims to correlate several anodized surfaces using H2SO4 (5 or 10%wt. concentration and 45 or 60 min exposition) to tribological outputs, contributing to understanding the friction behavior of non-metallic layers. Three steps were applied on anodized Alumold 500 alloy. Firstly, the scratching test, to select the layers with higher critical loads. The greatest scratch resistance was obtained with the highest H3/E2 value and thickest layer. Secondly, lubricated tests with only poly-alpha-olefin oils (PAO6) were performed in a reciprocating test rig using an alumina ball as the counterpart. From that, only the best AAO condition was selected. Finally, three more lubricant compositions were tested, as follows: adding ZDDP to PAO6, alumina nanoparticles (~100 nm) to PAO6, and ZDDP + nanoparticles. The addition of nano-alumina to the PAO6 resulted in the maintenance of COF values with only PAO6 (~0.1), when the most significant drop in the surface roughness was observed along with the tests.

Keywords