Jurnal Fourier (Oct 2014)
Konsep Dasar Ruang Metrik Cone
Abstract
Ruang metrik merupakan salah satu konsep yang penting dalam ranah analisis fungsional. Dikatakan penting karena konsep ruang metrik banyak dipakai dalam teori-teori matematika yang lain dan sering dipakai juga dalam studi fisika lanjut. Ruang metrik adalah suatu himpunan yang berlaku suatu metrik. Metrik adalah suatu fungsi dengan domain sembarang himpunan yang tak kosong menuju kodomain bilangan real atau fungsi bernilai real dengan definisi urutan dalam bilangan real. Pada tahun 2007 Huang Long Guang dan Zhang Xian menggeneralisasikan konsep ruang metrik menjadi ruang metrik cone. Tujuan dari penelitian ini adalah untuk mengkaji konsep dasar ruang metrik cone yang meliputi mengkaji barisan konvergen, barisan cauchy beserta contohnya dan hubungan barisan konvergen dan barisan terbatas dalam ruang metrik cone, mengkaji hubungan ruang metrik dan ruang metrik cone dan mengkaji salah satu teorema titik tetap dalam ruang metrik cone. Penelitian ini dilakukan dengan menggunakan metode studi literatur yaitu dengan membahas dan menjabarkan konsep-konsep yang sudah ada di dalam literatur. Diharapkan dari penelitian ini dapat memberikan gambaran umum tentang konsep dasar ruang metrik cone. Selanjutnya dari penelitian ini dapat dibuktikan bahwa setiap ruang metrik adalah ruang metrik cone dengan ruang Banach dan cone tertentu dan juga dapat dibuktikan bahwa pemetaan kontraktif pada ruang metrik cone dengan cone normal mempunyai titik tetap tunggal.