Journal of High Energy Physics (Jan 2022)

Brown-York charges at null boundaries

  • Venkatesa Chandrasekaran,
  • Éanna É. Flanagan,
  • Ibrahim Shehzad,
  • Antony J. Speranza

DOI
https://doi.org/10.1007/JHEP01(2022)029
Journal volume & issue
Vol. 2022, no. 1
pp. 1 – 29

Abstract

Read online

Abstract The Brown-York stress tensor provides a means for defining quasilocal gravitational charges in subregions bounded by a timelike hypersurface. We consider the generalization of this stress tensor to null hypersurfaces. Such a stress tensor can be derived from the on-shell subregion action of general relativity associated with a Dirichlet variational principle, which fixes an induced Carroll structure on the null boundary. The formula for the mixed-index tensor T i j takes a remarkably simple form that is manifestly independent of the choice of auxiliary null vector at the null surface, and we compare this expression to previous proposals for null Brown-York stress tensors. The stress tensor we obtain satisfies a covariant conservation equation with respect to any connection induced from a rigging vector at the hypersurface, as a result of the null constraint equations. For transformations that act covariantly on the boundary structures, the Brown-York charges coincide with canonical charges constructed from a version of the Wald-Zoupas procedure. For anomalous transformations, the charges differ by an intrinsic functional of the boundary geometry, which we explicity verify for a set of symmetries associated with finite null hyper-surfaces. Applications of the null Brown-York stress tensor to symmetries of asymptotically flat spacetimes and celestial holography are discussed.

Keywords