Energies (Aug 2024)

Infrared Image Object Detection Algorithm for Substation Equipment Based on Improved YOLOv8

  • Siyu Xiang,
  • Zhengwei Chang,
  • Xueyuan Liu,
  • Lei Luo,
  • Yang Mao,
  • Xiying Du,
  • Bing Li,
  • Zhenbing Zhao

DOI
https://doi.org/10.3390/en17174359
Journal volume & issue
Vol. 17, no. 17
p. 4359

Abstract

Read online

Substations play a crucial role in the proper operation of power systems. Online fault diagnosis of substation equipment is critical for improving the safety and intelligence of power systems. Detecting the target equipment from an infrared image of substation equipment constitutes a pivotal step in online fault diagnosis. To address the challenges of missed detection, false detection, and low detection accuracy in the infrared image object detection in substation equipment, this paper proposes an infrared image object detection algorithm for substation equipment based on an improved YOLOv8n. Firstly, the DCNC2f module is built by combining deformable convolution with the C2f module, and the C2f module in the backbone is replaced by the DCNC2f module to enhance the ability of the model to extract relevant equipment features. Subsequently, the multi-scale convolutional attention module is introduced to improve the ability of the model to capture multi-scale information and enhance detection accuracy. The experimental results on the infrared image dataset of the substation equipment demonstrate that the improved YOLOv8n model achieves [email protected] and [email protected]:0.95 of 92.7% and 68.5%, respectively, representing a 2.6% and 3.9% improvement over the baseline model. The improved model significantly enhances object detection accuracy and exhibits superior performance in infrared image object detection in substation equipment.

Keywords