Water (Sep 2022)

Feasibility Study of Atmospheric Water Harvesting Augmented through Evaporative Cooling

  • Lesedi Kgatla,
  • Brian Gidudu,
  • Evans M. Nkhalambayausi Chirwa

DOI
https://doi.org/10.3390/w14192983
Journal volume & issue
Vol. 14, no. 19
p. 2983

Abstract

Read online

The water harvesting potential of atmospheric water generators (AWGs) in high-altitude semiarid regions can be diminutive relative to the water generation capacity. Operational parameters for the dehumidification process can be augmented to increase atmospheric water in the defined zone available for harvesting. In this paper, the feasibility of augmenting the microclimates of AWGs at the point of air extraction through an evaporative cooling system (ECS) was investigated. Water yield and capacity utilisation were measured from two AWGs piloted on a plant in Ga-Rankuwa, South Africa. This was implemented between December 2019 and May 2021. The study revealed that although the ECS did impact the operating parameters through decreasing temperature and increasing relative humidity (p p > 0.05). Capacity utilisation of the AWGs remained below 50% after augmentation. Cooling efficiency of the ECS ranged between 1.4–74.5%. Energy expenditures of 0.926 kWh/L and 0.576 kWh/L for AWGs 1 and 2 were required under pristine conditions, respectively. Under the modified conditions, energy expenditure decreased to 0.855 kWh/L for AWG 1, but increased/L to 0.676 kWh for AWG 2. ECS is deduced to not be a feasible intervention for augmenting water harvesting potential for AWGs in this semiarid zone.

Keywords