Scientific Reports (Sep 2022)

Aerodynamics and three-dimensional effect of a translating bristled wing at low Reynolds numbers

  • Wenjie Liu,
  • Mao Sun

DOI
https://doi.org/10.1038/s41598-022-18834-0
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 15

Abstract

Read online

Abstract The smallest insects fly with bristled wings at very low Reynolds numbers (Re) and use the drag of the wings to provide the weight-supporting force and thrust. Previous studies used two-dimensional (2-D) models to study the aerodynamic force and the detailed flow field of the bristled wings, neglecting the three-dimensional (3-D) effect caused by the finite span. At high Re, the 3-D effect is known to decrease the aerodynamic force on a body, compared with the 2-D case. However, the bristled wing operates at very low Re, for which the 3-D effect is unknown. Here, a 3-D model of the bristled wing is constructed to numerically investigate the detailed flow field and the aerodynamic force of the wing. Our findings are as follows: The 3-D effect at low Re increases the drag of the bristled wing compared with that of the corresponding 2-D wing, which is contrary to that of the high-Re case. The drag increase is limited to the tip region of the bristles and could be explained by the increase of the flow velocity around the tip region. The spanwise length of the drag-increasing region (measuring from the wing tip) is about 0.23 chord length and does not vary as the wing aspect ratio increases. The amount of the drag increment in the tip region does not vary as the wing aspect ratio increases either, leading to the decrease of the drag coefficient with increasing aspect ratio.