International Journal of Molecular Sciences (Jun 2020)

AtHB7/12 Regulate Root Growth in Response to Aluminum Stress

  • Yang Liu,
  • Jiameng Xu,
  • Siyi Guo,
  • Xianzheng Yuan,
  • Shan Zhao,
  • Huiyu Tian,
  • Shaojun Dai,
  • Xiangpei Kong,
  • Zhaojun Ding

DOI
https://doi.org/10.3390/ijms21114080
Journal volume & issue
Vol. 21, no. 11
p. 4080

Abstract

Read online

Aluminum (Al) stress is a major limiting factor for plant growth and crop production in acid soils. At present, only a few transcription factors involved in the regulation of Al resistance have been characterized. Here, we used reversed genetic approach through phenotype analysis of overexpressors and mutants to demonstrate that AtHB7 and AtHB12, two HD-Zip I transcription factors, participate in Al resistance. In response to Al stress, AtHB7 and AtHB12 displayed different dynamic expression patterns. Although both AtHB7 and AtHB12 positively regulate root growth in the absence of Al stress, our results showed that AtHB7 antagonizes with AtHB12 to control root growth in response to Al stress. The athb7/12 double mutant displayed a wild-type phenotype under Al stress. Consistently, our physiological analysis showed that AtHB7 and AtHB12 oppositely regulate the capacity of cell wall to bind Al. Yeast two hybrid assays showed that AtHB7 and AtHB12 could form homo-dimers and hetero-dimers in vitro, suggesting the interaction between AtHB7 and AtHB12 in the regulation of root growth. The conclusion was that AtHB7 and AtHB12 oppositely regulate Al resistance by affecting Al accumulation in root cell wall.

Keywords