Scientific Reports (Feb 2024)

A new approach to classifying polymer type of microplastics based on Faster-RCNN-FPN and spectroscopic imagery under ultraviolet light

  • Thunchanok Thammasanya,
  • Sakarat Patiam,
  • Eknarin Rodcharoen,
  • Ponlachart Chotikarn

DOI
https://doi.org/10.1038/s41598-024-53251-5
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Hazardous compounds from microplastics in coastal and marine environments are adsorbed by live organisms, affecting human and marine life. It takes time, money and effort to study the distribution and type of microplastics in the environment, using appropriate expensive equipment in a laboratory. However, deep learning can assist in identifying and quantifying microplastics from an image. This paper presents a novel microplastic classification method that combines the benefits of UV light with deep learning. The Faster-RCNN model with a ResNet-50-FPN backbone was implemented to detect and identify microplastics. Microplastic images from the field taken under UV light were used to train and validate the model. This classification model achieved a high precision of 85.5–87.8%, and the mAP scores were 33.9% on an internal test set and 35.7% on an external test set. This classification approach provides a high-accuracy, low-cost, and time-effective automated identification and counting of microplastics.