Ultrasonics Sonochemistry (Feb 2023)
Ultrasound enhanced solubilization of forest biorefinery hydrolysis lignin in mild alkaline conditions
Abstract
In the forest biorefinery, hydrolysis lignin (HL) is often dissolved with high concentration NaOH solution, followed by acid precipitation to obtain purified HL. For the first time, this study evaluates the effect of ultrasound (US) on the dissolution of industrially produced HL in aqueous NaOH solutions and the acid precipitation yield of HL. The solubility of HL in mild aqueous NaOH solutions was studied with and without US treatment at 20 kHz concerning the solid-to-liquid ratio, molecular weight of dissolved fractions and structural changes in dissolved HL. Results showed that the solubility of HL at 25 °C was strongly dependent on NaOH concentration. However, the US treatment significantly improved the solubility of HL, reaching a solubility plateau at 0.1 NaOH/HL ratio. US treatment enhanced the solubilization of HL molecules with higher MW compared to conventional mixing. The increase of HL solubility was up to 30 % and the recovery yield of purified lignin with acid precipitation was 37 % higher in dilute NaOH solution. A significant result was that the Mw of dissolved HL in homogeneous alkali solutions decreased with US treatment. SEC, HSQC and 31P NMR analyses of dissolved HL characteristics showed that both, the mechanoacoustic and sonochemical solubilization pathways contribute to the dissolution process. However, US does not cause major changes in the HL structure compared to the native lignin. Indeed, US technology has the potential to advance the dissolution and purification of HL in biorefineries by reducing the amount of chemicals required; thus, more controlled and environmentally friendly conditions can be used in HL valorization.