Buildings (Jun 2024)

Evaluation Methods and Influence Factors of Blisters Disease in Concrete Composite Bridges

  • Chen Yu,
  • Mengya Zhang

DOI
https://doi.org/10.3390/buildings14061763
Journal volume & issue
Vol. 14, no. 6
p. 1763

Abstract

Read online

The decks of steel–concrete composite bridges are constantly exposed to severe environmental conditions, which frequently give rise to significant issues, including cracks and holes. These problems occur due to the formation of blisters under the paving layer with waterproofing membranes. This paper aims to delve into the characteristics of blisters during their expansion and propagation stages. Additionally, it proposes a rating index and a simplified calculation formula to assess the interface propagation performance of bridge deck pavement. To achieve this, the research group developed a simulated blister test device and employed the digital image correlation (DIC) technique. The study investigated the impact of pavement structure, waterproofing layer, and air voids on blister propagation behavior. It was discovered that the pavement blister test encompassed two distinct stages: expansion and propagation. Furthermore, the SMA-13 asphalt mixture exhibited slightly superior resistance to blistering compared to AC-13. It was also observed that when the mixture void ratio is less than 3.5%, it becomes more susceptible to blistering deformation, ultimately leading to debonding damage. Among the waterproofing materials tested, SBS-modified emulsified asphalt demonstrated the weakest adhesion to cement concrete substrates, while SBS-modified asphalt performed slightly better than rubberized asphalt.

Keywords