Silva Fennica (Jan 2021)

Large-area inventory of species composition using airborne laser scanning and hyperspectral data

  • Hans Ørka,
  • Endre Hansen,
  • Michele Dalponte,
  • Terje Gobakken,
  • Erik Næsset

DOI
https://doi.org/10.14214/sf.10244
Journal volume & issue
Vol. 55, no. 4

Abstract

Read online

Tree species composition is an essential attribute in stand-level forest management inventories and remotely sensed data might be useful for its estimation. Previous studies on this topic have had several operational drawbacks, e.g., performance studied at a small scale and at a single tree-level with large fieldwork costs. The current study presents the results from a large-area inventory providing species composition following an operational area-based approach. The study utilizes a combination of airborne laser scanning and hyperspectral data and 97 field sample plots of 250 m collected over 350 km of productive forest in Norway. The results show that, with the availability of hyperspectral data, species-specific volume proportions can be provided in operational forest management inventories with acceptable results in 90% of the cases at the plot level. Dominant species were classified with an overall accuracy of 91% and a kappa-value of 0.73. Species-specific volumes were estimated with relative root mean square differences of 34%, 87%, and 102% for Norway spruce ( (L.) Karst.), Scots pine ( L.), and deciduous species, respectively. A novel tree-based approach for selecting pixels improved the results compared to a traditional approach based on the normalized difference vegetation index.22Picea abiesPinus sylvestris