International Dental Journal (Dec 2024)
The Effect of Bovine Trypsin on the Adhesion and pH of Dental Plaque Biofilms: An In Vitro Study
Abstract
Objective: The aim of this study was to investigate the effect of bovine trypsin on the adhesion and pH of dental plaque biofilms. Methods: A multispecies dental plaque biofilm model and a single-species dental plaque biofilm model were established in vitro. Three groups were tested: (1) blank control group (aseptic ultrapure water); (2) negative control group (1M Tris-HCl buffer, pH = 7.4); and (3) experimental group (bovine trypsin). Adhesion ability was measured using an automatic microplate reader and visualised by confocal laser scanning microscopy (CLSM). The pH was measured using a pH meter. The expression of gtfB, gtfC, and gtfD was analysed using quantitative real-time polymerase chain reaction. Results: Adhesion ability in the experimental group was significantly lower than that in the blank group and the negative control group (P < .05); readhesion ability in the experimental group was inhibited for a certain period of time (24-hour multispecies biofilms were inhibited from 4 to 8 hours, and the 48- and 72-hour multispecies biofilms were inhibited from 2 to 6 hours; P < .05). The decrease in pH was inhibited for a certain period of time (24-hour multispecies biofilms were inhibited from 2 to 8 hours, and the 48- and 72-hour multispecies biofilms were inhibited from 1 to 8 hours; P < .05). Expression levels of gtfB, gtfC, gtfD, and ldh in the experimental group were significantly lower than those in the blank group (P < .05). Conclusions: Bacterial adhesion, and readhesion, decreasd pH, and expression of adhesion- and acid-related genes by Streptococcus mutans in biofilms could be reduced by bovine trypsin for a certain period of time.