BMC Pregnancy and Childbirth (May 2012)
Fetal volume measurements with three dimensional ultrasound in the first trimester of pregnancy, related to pregnancy outcome, a prospective cohort study
Abstract
Abstract Background First trimester growth restriction is associated with an increased risk of adverse birth outcomes (preterm birth, low birth weight and small for gestational age at birth). The differences between normal and abnormal growth in early pregnancy are small if the fetal size is measured by the crown-rump-length. Three-dimensional ultrasound volume measurements might give more information about fetal development than two-dimensional ultrasound measurements. Detection of the fetus with a small fetal volume might result in earlier detection of high risk pregnancies and a better selection of high risk pregnancies. Methods A prospective cohort study, performed at the Máxima Medical Centre, in Eindhoven-Veldhoven, the Netherlands. During the routine first trimester scan with nuchal translucency measurement 500 fetal volumes will be obtained. The gestational age is based on the first day of the last menstrual period in a regular menstrual cycle and by the crown-rump-length. The acquired datasets are collected and stored on a hard disk for offline processing and volume calculation. The investigator who performs the volume measurements is blinded for the results of the first trimester scan. The manual mode will be used to outline the Region Of Interest, the fetal head and rump, in all cross sections. The fetal volumes are calculated with a rotational step of 9°. First, the relation between fetal volume and gestational age, for a set of participants with normal pregnancies (training set), will be assessed. This model will then be used to determine expected values of fetal volume for a normal pregnancy, which will be referred to as expected normal values. Secondly, for a new set of participants with normal pregnancies and a set of participants with complicated pregnancies (together defined as validation set), the observed fetal volumes (FVobserved) are compared with their expected normal values (FVexpected) and expressed as a percentage of the expected normal value. The mean difference in percentage error between the set of normal versus complicated pregnancies will then be compared using the independent-samples t-test. Finally, logistic regression analysis will be applied to the validation set of participants to analyze the possibility of predicting the pregnancy outcome after fetal volume calculation in the first trimester, using this percentage error. Discussion After this study it is clear whether FV measurement in the first trimester can detect high risk pregnancies. If it is possible to detect these pregnancies, more intensive follow up in these pregnancies might result in fewer complicated pregnancies and fewer fetal morbidities.