BMC Genomic Data (Aug 2023)

Relationship between DNA methylation changes and skeletal muscle mass

  • Jeong-An Gim,
  • Sang-Yeob Lee,
  • Seung Chan Kim,
  • Kyung-Wan Baek,
  • Sung Hyo Seo,
  • Jun-Il Yoo

DOI
https://doi.org/10.1186/s12863-023-01152-3
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background Sarcopenia is a disease diagnosed in the elderly. In patients with sarcopenia, the muscle mass decreases every year. The occurrence of sarcopenia is greatly affected by extrinsic factors such as eating habits, exercise, and lifestyle. The present study aimed to determine the relationship between muscle mass traits and genes affected by epigenetic factors with three different adjustment methods using Korean Genome and Epidemiology Study (KOGES) data. Results We conducted a demographic study and DNA methylation profiling by three studies according to the muscle mass index (MMI) adjustment methods: appendicular skeletal muscle mass divided by body weight (MMI1); appendicular skeletal muscle mass divided by square of height (MMI2); appendicular skeletal muscle mass divided by BMI (MMI3). We analyzed differentially methylated regions (DMRs) for each group. We then restricted our subjects to be top 30% (T30) and bottom 30% (B30) based on each MMI adjustment method. Additionally, we performed enrichment analysis using PathfindR to evaluate the relationship between identified DMRs and sarcopenia. A total of 895 subjects were included in the demographic study. The values of BMI, waist, and hip showed a significant difference in all three groups. Among 446 participants, 44 subjects whose DNA methylation profiles were investigated were included for DNA methylation analysis. The results of enrichment analysis showed differences between groups. In the women group through MMI1 method, only the glutamatergic synapse pathway showed a significant result. In the men group through MMI2 method, the adherens junction pathway was the most significant. Women group through MMI2 method showed similar results, having an enriched Rap1 signaling pathway. In men group through MMI3 method, the Fc epsilon RI signaling pathway was the most enriched. Particularly, the notch signaling pathway was significantly enriched in women group through MMI3 method. Conclusion This study presents results about which factor should be concerned first in muscle mass index (MMI) adjustment. The present study suggested that GAB2 and JPH3 in MMI1 method, HLA-DQB1 and TBCD in MMI2 method, GAB2, NDUFB4 and ISPD in MMI3 method are potential genes that can have an impact on muscle mass. It could enable future epigenetic studies of genes based on annotation results. The present study is a nationwide study in Korea with the largest size up to date that compares adjustment indices for MMI in epigenetic research.

Keywords