Cell Transplantation (Sep 1995)

CD34+++ Stem/Progenitor Cells Purified from Cryopreserved Normal Cord Blood can be Transduced with High Efficiency by a Retroviral Vector and Expanded Ex Vivo with Stable Integration and Expression of Fanconi Anemia Complementation C Gene

  • Li Lu M.D.,
  • Yue Ge,
  • Zhi-Hua Li,
  • Brian Freie,
  • D. Wade Clapp,
  • Hal E. Broxmeyer Ph.D.

DOI
https://doi.org/10.1177/096368979500400510
Journal volume & issue
Vol. 4

Abstract

Read online

A future possibility for treatment of genetic diseases may be gene therapy using autologous cord blood (CB) stem/progenitor cells. This might require cryopreservation of CB stem/progenitor cells prior to purification, gene transduction, and ex vivo expansion of cells. To address this possibility, nonadherent low density T-lymphocyte depleted (NALT-) cells from fresh or cryopreserved cord blood were sorted for CD34+++ phenotype, transduced with a recombinant retroviral vector encoding Fanconi anemia complementation C (FACC) gene, and cells expanded ex vivo in suspension culture for 7 days with growth factors. The results demonstrate: 1) high recovery of viable cells after thawing; 2) high efficiency purification of CD34+++ cells from NALT- cells prior to and after cryopreservation; 3) high degree of expansion of nucleated cells and immature progenitors from CD34+++ cells before and after cryopreservation; 4) efficient transduction with stable integration and expression of newly introduced genes in cryopreserved and then sorted stem/progenitor cells, as detected prior to and after ex vivo expansion; and 5) high efficiency transduction of single isolated CD34+++ cells obtained from cryopreserved NALT- CB. This information should be of value for future studies evaluating the use of cryopreserved cord blood for gene transfer/gene therapy.