Symmetry (Mar 2021)

An Investigation of Social Distancing and Quantity of Luggage Impacts on the Three Groups Reverse Pyramid Boarding Method

  • Liviu-Adrian Cotfas,
  • R. John Milne,
  • Camelia Delcea,
  • Corina Ioanăș

DOI
https://doi.org/10.3390/sym13040544
Journal volume & issue
Vol. 13, no. 4
p. 544

Abstract

Read online

The social distancing imposed by the novel coronavirus, SARS-CoV-2, has affected people’s everyday lives and has resulted in companies changing the way they conduct business. The airline industry has been continually adapting since the novel coronavirus appeared. A series of airlines have changed their airplane boarding and passenger seat allocation process to increase their passengers’ safety. Many suggest a minimum social distance among passengers in the aisle while boarding. Some airlines have reduced their airplanes’ capacities by keeping the middle seats empty. Recent literature indicates that the Reverse Pyramid boarding method provides favorable values for boarding time and passenger health metrics when compared to other boarding methods. This paper analyses the extent to which aisle social distancing, the quantity of carry-on luggage, and an airline’s relative preferences for different performance metrics influence the optimal number of passengers to board the airplane in each of three boarding groups when the Reverse Pyramid method is used and the middle seats are empty. We also investigate the resulting impact on the average boarding time and health risks to boarding passengers. We use an agent-based model and stochastic simulation approach to evaluate various levels of aisle social distancing among passengers and the quantity of luggage carried aboard the airplane. When minimizing boarding time is the primary objective of an airline, for a given value of aisle social distance, decreasing the carry-on luggage volumes increases the optimal number of boarding group 1 passengers and decreases the optimal number of group 2 passengers with aisle seats; for a given volume of luggage, an increase in aisle social distance is associated with more passengers in group 1 and more aisle seat passengers in group 2. When minimizing the health risk to aisle seat passengers or to window seat passengers, the optimal solution results from assigning an equal number of window seat passengers to groups 1 and 2 and an equal number of aisle seat passengers to groups 2 and 3. This solution is robust to changes in luggage volume and the magnitude of aisle social distance. Furthermore, across all luggage and aisle social distancing scenarios, the solution reduces the health risk to aisle seat passengers between 22.76% and 35.31% while increasing average boarding time by less than 3% in each scenario.

Keywords