Revista Colombiana de Estadística (Nov 2007)

ESTIMATION OF MISSING DATA IN REPEATED MEASUREMENTS WITH BINARY RESPONSE ESTIMACIÓN DE DATOS FALTANTES EN MEDIDAS REPETIDAS CON RESPUESTA BINARIA

  • Ayala Yolima,
  • Melo Óscar Orlando

Journal volume & issue
Vol. 30, no. 2
pp. 265 – 285

Abstract

Read online

A maximum likelihood method is proposed to provide estimates for models with binary response in longitudinal data based on an univariate model. Under a missing at random (MAR) mechanism, the EM algorithm is used in two different forms: in the first, the E step can be expressed as a weighted log-likelihood responses given the previous times, based in the method of weights proposed by Ibrahim (1990), for partially missing covariates. In the second, on the E step the estimation and imputation for missing data is based in Ancova method proposed by Bartlett (1937). Finally, we apply our method to the data from the Muscatine Coronary Risk Factor Study, employed in Fitzmaurice et al. (1994).Se propone una metodología para la estimación de datos faltantes en condiciones longitudinales con respuesta binaria, desde una perspectiva univariada, basada en máxima verosimilitud. Suponiendo que las respuestas son faltantes de forma aleatoria (FFA), en cada una de las ocasiones se emplea el algoritmo EM de dos formas distintas: en la primera, el paso E se expresa como una log-verosimilitud ponderada de la respuesta, condicionada a las anteriores ocasiones tomadas como covariables adicionales, con base en el método de Ibrahim (1990) para covariables categóricas faltantes, obteniendo de esta forma estimadores máximo verosímiles. En la segunda, en el paso E se realiza la estimación e imputación de datos faltantes basada en el método Ancova de Bartlett (1937). La metodología propuesta es aplicada en un caso de estudio relacionado con factores de riesgo coronario, presentado en Fitzmaurice et al. (1994).

Keywords