Metabolites (Jan 2023)

Alfalfa Xeno-miR168b Target <i>CPT1A</i> to Regulate Milk Fat Synthesis in Bovine Mammary Epithelial Cells

  • Jingying Jia,
  • Hongjuan Duan,
  • Baobao Liu,
  • Yanfen Ma,
  • Yun Ma,
  • Xiaoyan Cai

DOI
https://doi.org/10.3390/metabo13010076
Journal volume & issue
Vol. 13, no. 1
p. 76

Abstract

Read online

It was shown that microRNAs (miRNAs) play an important role in the synthesis of milk fat; thus, this manuscript evaluated whether exogenous miRNA (xeno-miRNAs) from alfalfa could influence the milk fat content in dairy cows. At first, mtr-miR168b was screened from dairy cow milk and blood. Then, EdU staining, flow cytometry, Oil Red O staining, qRT-PCR, and WB were applied to explore the effect of xeno-miR168b on the proliferation, apoptosis, and lipid metabolism of bovine mammary epithelial cells (BMECs). Finally, in order to clarify the pathway that regulated the lipid metabolism of BMECs using xeno-miR168b, a double-luciferase reporter assay was used to verify the target gene related to milk fat. These results showed that overexpression of xeno-miR168b inhibited cell proliferation but promoted apoptosis, which also decreased the expression of several lipid metabolism genes, including PPARγ, SCD1, C/EBPβ, and SREBP1, significantly inhibited lipid droplet formation, and reduced triglyceride content in BMECs. Furthermore, the targeting relationship between CPT1A and xeno-miR168b was determined and it was confirmed that CPT1A silencing reduced the expression of lipid metabolism genes and inhibited fat accumulation in BMECs. These findings identified xeno-miR168b from alfalfa as a cross-kingdom regulatory element that could influence milk fat content in dairy cows by modulating CPT1A expression.

Keywords