npj Quantum Materials (Jan 2024)

Emergence of nodal Bogoliubov quasiparticles across the transition from the pseudogap metal to the d-wave superconductor

  • Maine Christos,
  • Subir Sachdev

DOI
https://doi.org/10.1038/s41535-023-00608-0
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 10

Abstract

Read online

Abstract We model the pseudogap state of the hole- and electron-doped cuprates as a metal with hole and/or electron pocket Fermi surfaces. In the absence of long-range antiferromagnetism, such Fermi surfaces violate the Luttinger requirement of enclosing the same area as free electrons at the same density. Using the Ancilla theory of such a pseudogap state, we describe the onset of conventional d-wave superconductivity by the condensation of a charge e Higgs boson transforming as a fundamental under the emergent SU(2) gauge symmetry of a background π-flux spin liquid. In all cases, we find that the d-wave superconductor has gapless Bogoliubov quasiparticles at 4 nodal points on the Brillouin zone diagonals with significant velocity anisotropy, just as in the BCS state. This includes the case of the electron-doped pseudogap metal with only electron pockets centered at wavevectors (π, 0), (0, π), and an electronic gap along the zone diagonals. Remarkably, in this case, too, gapless nodal Bogoliubov quasiparticles emerge within the gap at 4 points along the zone diagonals upon the onset of superconductivity.