Unraveling the Complex Interactions: Machine Learning Approaches to Predict Bacterial Survival against ZnO and Lanthanum-Doped ZnO Nanoparticles
Diego E. Navarro-López,
Yocanxóchitl Perfecto-Avalos,
Araceli Zavala,
Marco A. de Luna,
Araceli Sanchez-Martinez,
Oscar Ceballos-Sanchez,
Naveen Tiwari,
Edgar R. López-Mena,
Gildardo Sanchez-Ante
Affiliations
Diego E. Navarro-López
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
Yocanxóchitl Perfecto-Avalos
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
Araceli Zavala
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
Marco A. de Luna
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
Araceli Sanchez-Martinez
Departamento de Ingenieria de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Jalisco, Mexico
Oscar Ceballos-Sanchez
Departamento de Ingenieria de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Jalisco, Mexico
Naveen Tiwari
Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782 Santiago de Compostela, Spain
Edgar R. López-Mena
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
Gildardo Sanchez-Ante
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
The rise in antibiotic-resistant bacteria is a global health challenge. Due to their unique properties, metal oxide nanoparticles show promise in addressing this issue. However, optimizing these properties requires a deep understanding of complex interactions. This study incorporated data-driven machine learning to predict bacterial survival against lanthanum-doped ZnO nanoparticles. The effect of incorporation of lanthanum ions on ZnO was analyzed. Even with high lanthanum concentration, no significant variations in structural, morphological, and optical properties were observed. The antibacterial activity of La-doped ZnO nanoparticles against Gram-positive and Gram-negative bacteria was qualitatively and quantitatively evaluated. Nanoparticles induce 60%, 95%, and 55% bacterial death against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, respectively. Algorithms such as Multilayer Perceptron, K-Nearest Neighbors, Gradient Boosting, and Extremely Random Trees were used to predict the bacterial survival percentage. Extremely Random Trees performed the best among these models with 95.08% accuracy. A feature relevance analysis extracted the most significant attributes to predict the bacterial survival percentage. Lanthanum content and particle size were irrelevant, despite what can be assumed. This approach offers a promising avenue for developing effective and tailored strategies to reduce the time and cost of developing antimicrobial nanoparticles.