Physics (Jun 2020)

Kinetic Freeze-Out Properties from Transverse Momentum Spectra of Pions in High Energy Proton-Proton Collisions

  • Li-Li Li,
  • Fu-Hu Liu

DOI
https://doi.org/10.3390/physics2020015
Journal volume & issue
Vol. 2, no. 2
pp. 277 – 308

Abstract

Read online

Transverse momentum spectra of negative and positive pions produced at mid-(pseudo)rapidity in inelastic or non-single-diffractive proton-proton collisions over a center-of-mass energy, s , range from a few GeV to above 10 TeV are analyzed by the blast-wave fit with Boltzmann (Tsallis) distribution. The blast-wave fit results are well fitting to the experimental data measured by several collaborations. In a particular superposition with Hagedorn function, both the excitation functions of kinetic freeze-out temperature ( T 0 ) of emission source and transverse flow velocity ( β T ) of produced particles obtained from a given selection in the blast-wave fit with Boltzmann distribution have a hill at s ≈ 10 GeV, a drop at dozens of GeV, and then an increase from dozens of GeV to above 10 TeV. However, both the excitation functions of T 0 and β T obtained in the blast-wave fit with Tsallis distribution do not show such a complex structure, but a very low hill. In another selection for the parameters or in the superposition with the usual step function, T 0 and β T increase generally quickly from a few GeV to about 10 GeV and then slightly at above 10 GeV, there is no such the complex structure, when also studying nucleus-nucleus collisions.

Keywords