Frontiers in Plant Science (Apr 2022)
Physiological, Structural, and Functional Insights Into the Cryoprotection of Membranes by the Dehydrins
Abstract
Plants can be exposed to cold temperatures and have therefore evolved several mechanisms to prevent damage caused by freezing. One of the most important targets are membranes, which are particularly susceptible to cold damage. To protect against such abiotic stresses, plants express a family of proteins known as late embryogenesis abundant (LEA) proteins. Many LEA proteins are intrinsically disordered, that is, they do not contain stable secondary or tertiary structures alone in solution. These proteins have been shown in a number of studies to protect plants from damage caused by cold, drought, salinity, and osmotic stress. In this family, the most studied proteins are the type II LEA proteins, better known as dehydrins (dehydration-induced proteins). Many physiological studies have shown that dehydrins are often located near the membrane during abiotic stress and that the expression of dehydrins helps to prevent the formation of oxidation-modified lipids and reduce the amount of electrolyte leakage, two hallmarks of damaged membranes. One of the earliest biophysical clues that dehydrins are involved in membrane cryoprotection came from in vitro studies that demonstrated a binding interaction between the protein and membranes. Subsequent work has shown that one conserved motif, known as K-segments, is involved in binding, while recent studies have used NMR to explore the residue specific structure of dehydrins when bound to membranes. The biophysical techniques also provide insight into the mechanism by which dehydrins protect the membrane from cold stress, which appears to mainly involve the lowering of the transition temperature.
Keywords