HortTechnology (Feb 2023)

Selectivity and Efficacy of Acetic Acid and d-Limonene on Four Aquatic Plants

  • Lyn A. Gettys,
  • Kyle L. Thayer,
  • Joseph W. Sigmon,
  • Jennifer H. Bishop

DOI
https://doi.org/10.21273/HORTTECH05168-22
Journal volume & issue
Vol. 33, no. 2
pp. 186 – 192

Abstract

Read online

Most lake, canal, and pond management programs in the United States use herbicides labeled for aquatic use because many of these products, which are registered by the US Environmental Protection Agency, are relatively inexpensive and can effectively control undesirable plants without excessive damage to desirable species. Managers of these resources have expressed an interest in alternative methods for aquatic weed control that could reduce the use of traditional synthetic herbicides. We studied the effects of acetic acid and d-limonene on growth of the invasive aquatic species rotala (Rotala rotundifolia) and crested floatingheart (Nymphoides cristata), as well as on the native wetland plants spatterdock (Nuphar advena) and giant bulrush (Schoenoplectus californicus). We applied acetic acid and d-limonene (alone and in combination) once as foliar treatments to healthy plants, then grew out the plants for 8 weeks after treatment to observe damage resulting from treatments. We also evaluated diquat dibromide at three concentrations as “industry-standard” synthetic treatments for comparison. A 0.22% concentration of diquat dibromide eliminated most or all vegetation of rotala, crested floatingheart, and giant bulrush, but was much less damaging to spatterdock. Single-product applications of acetic acid or d-limonene had little effect on any of the four species evaluated. Some combinations of acetic acid and d-limonene provided acceptable control of rotala and selectivity on spatterdock and giant bulrush, but no treatments reduced crested floatingheart growth by more than 40%. Treating rotala with acetic acid and d-limonene instead of diquat dibromide would result in a 25-fold increase in material costs, which would make this option unaffordable for most aquatic system managers.

Keywords