Cancer Cell International (Jul 2024)

Unveiling heterogeneity and prognostic markers in ductal breast cancer through single-cell RNA-seq

  • Jianxun Hou,
  • Wei Liu,
  • Meihong Yan,
  • Yanlv Ren,
  • Cheng Qian,
  • Yingqiang Fu,
  • Hongbin Wang,
  • Zhigao Li

DOI
https://doi.org/10.1186/s12935-024-03325-1
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Breast cancer (BC) is a heterogeneous disease, with the ductal subtype exhibiting significant cellular diversity that influences prognosis and response to treatment. Single-cell RNA sequencing data from the GEO database were utilized in this study to investigate the underlying mechanisms of cellular heterogeneity and to identify potential prognostic markers and therapeutic targets. Methods Bioinformatics analysis was conducted using R packages to analyze the single-cell sequencing data. The presence of highly variable genes and differences in malignant potency within the same BC samples were examined. Differential gene expression and biological function between Type 1 and Type 2 ductal epithelial cells were identified. Lasso regression and Cox proportional hazards regression analyses were employed to identify genes associated with patient prognosis. Experimental validation was performed in vitro and in vivo to confirm the functional relevance of the identified genes. Results The analysis revealed notable heterogeneity among BC cells, with the presence of highly variable genes and differences in malignant behavior within the same samples. Significant disparities in gene expression and biological function were identified between Type 1 and Type 2 ductal epithelial cells. Through regression analyses, CYP24A1 and TFPI2 were identified as pivotal genes associated with patient prognosis. Kaplan-Meier curves demonstrated their prognostic significance, and experimental validation confirmed their inhibitory effects on malignant behaviors of ductal BC cells. Conclusion This study highlights the cellular heterogeneity in ductal subtype breast cancer and delineates the differential gene expressions and biological functions between Type 1 and Type 2 ductal epithelial cells. The genes CYP24A1 and TFPI2 emerged as promising prognostic markers and therapeutic targets, exhibiting inhibitory effects on BC cell malignancy in vitro and in vivo. These findings offer the potential for improved BC management and the development of targeted treatment strategies.

Keywords