Water (Sep 2023)

Redox Behavior of Chromium in the Reduction, Coagulation, and Biotic Filtration (RCbF) Drinking Water Treatment—A Pilot Study

  • Daniel Mahringer,
  • Sami S. Zerelli,
  • Aki S. Ruhl

DOI
https://doi.org/10.3390/w15193363
Journal volume & issue
Vol. 15, no. 19
p. 3363

Abstract

Read online

The chromium (Cr) limit values are currently tightened to 25 μg L−1 (EU), 5 μg L−1 (Germany), and possibly 10 μg L−1 Cr(VI) (California). The combined process of chemical reduction, coagulation, and biotic filtration (RCbF) efficiently removes Cr(VI) in drinking water. In this study, redox-active substances (O2, NO3−, Fe2+, MnO2) were investigated concerning their effect on the RCbF process. The experiments were performed at two-stage pilot waterworks for biological iron and manganese removal. O2 or NO3− as oxidants affected the RCbF process, neither by consumption of the reductant Fe(II) nor by re-oxidation of already formed Cr(III) in the supernatant of the filter bed. However, the oxidation of Cr(III) by O2 to Cr(VI) with MnO2 as a mediator was identified as potential risk for Cr breakthrough. Up to one third of the initial Cr(III) concentration was oxidized to Cr(VI) in the second filter bed within a contact time of only 5 min. The kinetically relevant mechanism seemed to be the formation of Cr(III)Fe(III)-hydroxides and not the reduction of Cr(VI) by Fe(II). Further, the mixing of Cr(VI) containing raw water with Fe(II) containing groundwater was determined as a chemical-free alternative for the RCbF process, depending on the resulting Fe(II) concentration after mixing.

Keywords