Advanced Science (Jan 2021)
AZD9291 Resistance Reversal Activity of a pH‐Sensitive Nanocarrier Dual‐Loaded with Chloroquine and FGFR1 Inhibitor in NSCLC
Abstract
Abstract AZD9291 can effectively prolong survival of non‐small cell lung cancer (NSCLC) patients. Unfortunately, the mechanism of its acquired drug resistance is largely unknown. This study shows that autophagy and fibroblast growth factor receptor 1 signaling pathways are both activated in AZD9291 resistant NSCLC, and inhibition of them, respectively, by chloroquine (CQ) and PD173074 can synergistically reverse AZD9291 resistance. Herein, a coloaded CQ and PD173074 pH‐sensitive shell–core nanoparticles CP@NP‐cRGD is developed to reverse AZD9291 resistance in NSCLC. CP@NP‐cRGD has a high encapsulation rate and stability, and can effectively prevent the degradation of drugs in circulation process. CP@NP‐cRGD can target tumor cells by enhanced permeability and retention effect and the cRGD peptide. The pH‐sensitive CaP shell can realize lysosome escape and then release drugs successively. The combination of CP@NP‐cRGD and AZD9291 significantly induces a higher rate of apoptosis, more G0/G1 phase arrest, and reduces proliferation of resistant cell lines by downregulation of p‐ERK1/2 in vitro. CQ in CP@NP‐cRGD can block protective autophagy induced by both AZD9291 and PD173074. CP@NP‐cRGD combined with AZD9291 shows adequate tumor enrichment, low toxicity, and excellent antitumor effect in nude mice. It provides a novel multifunctional nanoparticle to overcome AZD9291 resistance for potential clinical applications.
Keywords