Frontiers in Physiology (Sep 2024)

Circular RNA expression in turkey skeletal muscle satellite cells is significantly altered by thermal challenge

  • Ashley A. Powell,
  • Sandra G. Velleman,
  • Gale M. Strasburg,
  • Juan E. Abrahante Lloréns,
  • Kent M. Reed

DOI
https://doi.org/10.3389/fphys.2024.1476487
Journal volume & issue
Vol. 15

Abstract

Read online

IntroductionUnderstanding the genetic mechanisms behind muscle growth and development is crucial for improving the efficiency of animal protein production. Recent poultry studies have identified genes related to muscle development and explored how environmental stressors, such as temperature extremes, affect protein production and meat quality. Non-coding RNAs, including circular RNAs (circRNAs), play crucial roles in modulating gene expression and regulating the translation of mRNAs into proteins. This study examined circRNA expression in turkey skeletal muscle stem cells under thermal stress. The objectives were to identify and quantify circRNAs, assess circRNA abundance following RNAse R depletion, identify differentially expressed circRNAs (DECs), and predict potential microRNA (miRNA) targets for DECs and their associated genes.Materials and methodsCultured cells from two genetic lines (Nicholas commercial turkey and The Ohio State Random Bred Control 2) under three thermal treatments: cold (33°C), control (38°C), and hot (43°C) were compared at both the proliferation and differentiation stages. CircRNA prediction and differential expression and splicing analyses were conducted using the CIRIquant pipeline for both the untreated and RNase R depletion treated libraries. Predicted interactions between DECs and miRNAs, as well as the potential impact of circRNA secondary structure on these interactions, were investigated.ResultsA total of 11,125 circRNAs were predicted within the treatment groups, between both untreated and RNase R treated libraries. Differential expression analyses indicated that circRNA expression was significantly altered by thermal treatments and the genetic background of the stem cells. A total of 140 DECs were identified across the treatment comparisons. In general, more DECs within temperature treatment comparisons were identified in the proliferation stage and more DECs within genetic line comparisons were identified in the differentiation stage.DiscussionThis study highlights the significant impact of environmental stressors on non-coding RNAs and their role in gene regulation. Elucidating the role of non-coding RNAs in gene regulation can help further our understanding of muscle development and poultry production, underscoring the broader implications of this research for enhancing animal protein production efficiency.

Keywords