Heliyon (Jun 2024)
Investigation of the human-gut-kidney axis by fecal proteomics, highlights molecular mechanisms affected in CKD
Abstract
Objective: The interplay of gut microbiota with the kidney system in chronic kidney disease (CKD), is characterized by increased concentrations of uric acid in the gut, which in turn, may increase bacterial uricase activity and may lead to the generation of uremic toxins. Nevertheless, knowledge on these underlying bidirectional molecular mechanisms is still limited. Methods: In this exploratory study, proteomic analysis was performed on fecal samples, targeting to investigate this largely unexplored biological material as a source of information reflecting the gut-kidney axis. Specifically, fecal suspension samples from patients with CKD1 (n = 12) and CKD4 (n = 17) were analysed by LC-MS/MS, using both the Human and Bacterial UniProt RefSeq reviewed databases. Results: This fecal proteomic analysis collectively identified 701 human and 1011 bacterial proteins of high confidence. Differential expression analysis (CKD4/CKD1) revealed significant changes in human proteins (n = 8, including proteins such as galectin-3-binding protein and prolactin-inducible protein), that were found to be associated with inflammation and CKD. The differential protein expression of pancreatic alpha-amylase further suggested plausible reduced saccharolytic fermentation in CKD4/CKD1. Significant changes in bacterial proteins (n = 9, such as glyceraldehyde-3-phosphate dehydrogenase and enolase), participating in various carbohydrate and metabolic pathways important for the synthesis of butyrate, in turn suggested differential butyrate synthesis in CKD4/CKD1. Further, targeted quantification of fecal pancreatic alpha-amylase and butyrate in the same fecal suspension samples, supported these hypotheses. Conclusion: Collectively, this exploratory fecal proteomic analysis highlighted changes in human and bacterial proteins reflecting inflammation and reduced saccharolytic fermentation in CKD4/CKD1, plausibly affecting the butyrate synthesis pathways in advanced stage kidney disease. Integrative multi-omics validation is planned.