Journal of Engineering Science and Technology Review (Sep 2015)
The Creep Properties of Fine Sandstone under Uniaxial Tensile Stress
Abstract
A graduated uniaxial direct tensile creep test for fine sandstone is conducted by adopting a custom-designed direct tensile test device for rock. The experiment shows that the tensile creep of fine sandstone has similar creep curve patterns to those of compression creep, while the ratios of the creep strain to the total strain obtained in the tensile tests are substantially higher than those obtained for similar compression tests, which indicates that the creep ability of rock in the tensile process is higher than that in the uniaxial compression process. Based on the elastic modulus in the approximately linear portion of the obtained isochronous stress-strain curves of the tensile creep, the time dependence of the elasticity modulus for the Kelvin model is evaluated, and a revised generalized Kelvin model is obtained by substitution into the generalized Kelvin model. A new viscousplastic model is proposed to describe the accelerated creep properties, and this model is combined in series with the revised generalized Kelvin model to form a new nonlinear viscoelastic-plastic creep model that can describe the properties of attenuation creep, steady creep, and accelerated creep. Comparison of the test and theoretical curves demonstrates that they are nearly identical, which verifies the performance of the model.