Colloids and Interfaces (Feb 2020)

Mannosylerythritol Lipid B Enhances the Skin Permeability of the Water-Soluble Compound Calcein via OH Stretching Vibration Changes

  • Yoshihiro Tokudome,
  • Haruna Tsukiji

DOI
https://doi.org/10.3390/colloids4010010
Journal volume & issue
Vol. 4, no. 1
p. 10

Abstract

Read online

We confirmed that mannosylerythritol lipid B (MEL-B), a biosurfactant, enhances the skin permeability of the model water-soluble compound calcein. MEL-B liposomes were prepared by the thin-layer evaporation technique, and then applied to the skin. Although we attempted to adjust the size by extrusion, we could not control the particle diameter of the liposomes. However, the MEL-B liposome particle diameter remained the same over the 7-day study period. We observed an endothermic peak, with 74.7 °C as the transition temperature by differential scanning calorimetry. We also performed a fusion experiment with a fluorescence resonance energy transfer. A high amount of fusion of intercellular lipid liposomes and MEL-B liposomes occurred in a short period of time. After applying the MEL-B liposomes containing calcein to the skin, we measured the degree of calcein permeation and the amount of calcein within the skin. The resulting values were higher than those of an aqueous solution. The results obtained using a confocal laser scanning microscope suggested that calcein had been delivered deeply into the skin. Using the attenuation of total reflectance Fourier-transform infrared spectrometry, we observed that the OH stretching vibration had shifted to a higher wavenumber; however, this did not affect the CH stretching vibration. The measurement of transepidermal water loss after four days of continuous application of 1% MEL-B to animals revealed no changes. Our results suggest that MEL-B increases the skin permeability of compounds (calcein) that are difficult to deliver transdermally by changing the OH stretching vibration, which shifts to a higher wavenumber.

Keywords