The Cryosphere (Jul 2024)
Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
- L. Piermattei,
- L. Piermattei,
- L. Piermattei,
- M. Zemp,
- C. Sommer,
- F. Brun,
- M. H. Braun,
- L. M. Andreassen,
- J. M. C. Belart,
- E. Berthier,
- A. Bhattacharya,
- L. Boehm Vock,
- T. Bolch,
- T. Bolch,
- A. Dehecq,
- I. Dussaillant,
- D. Falaschi,
- D. Falaschi,
- C. Florentine,
- D. Floricioiu,
- C. Ginzler,
- G. Guillet,
- R. Hugonnet,
- R. Hugonnet,
- R. Hugonnet,
- M. Huss,
- M. Huss,
- M. Huss,
- A. Kääb,
- O. King,
- C. Klug,
- F. Knuth,
- L. Krieger,
- J. La Frenierre,
- R. McNabb,
- C. McNeil,
- R. Prinz,
- L. Sass,
- T. Seehaus,
- D. Shean,
- D. Treichler,
- A. Wendt,
- R. Yang
Affiliations
- L. Piermattei
- Department of Geography, University of Zurich, Zurich, 8057, Switzerland
- L. Piermattei
- Department of Geosciences, University of Oslo, Oslo, 0371, Norway
- L. Piermattei
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- M. Zemp
- Department of Geography, University of Zurich, Zurich, 8057, Switzerland
- C. Sommer
- Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- F. Brun
- Univ. Grenoble Alpes, IRD, CNRS, INRAE, Grenoble INP, IGE, 38000 Grenoble, France
- M. H. Braun
- Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- L. M. Andreassen
- Section for Glaciers, Ice and Snow, the Norwegian Water Resources and Energy Directorate (NVE), Oslo, 0301, Norway
- J. M. C. Belart
- National Land Survey of Iceland, Akranes, 300, Iceland
- E. Berthier
- Université de Toulouse, LEGOS (CNES/CNRS/IRD/UT3), Toulouse, 31000, France
- A. Bhattacharya
- Department of Earth Sciences & Remote Sensing, JIS University, Kolkata, 700109, India
- L. Boehm Vock
- Department of Mathematics, Statistics, and Computer Science, Saint Olaf College, Northfield, Minnesota, 55057, USA
- T. Bolch
- Institute of Geodesy, Graz University of Technology, Graz, 8010, Austria
- T. Bolch
- Department of Geography and Sustainable Development, University of St. Andrews, St Andrews, KY16 9AL, UK
- A. Dehecq
- Univ. Grenoble Alpes, IRD, CNRS, INRAE, Grenoble INP, IGE, 38000 Grenoble, France
- I. Dussaillant
- Department of Geography, University of Zurich, Zurich, 8057, Switzerland
- D. Falaschi
- Department of Geography and Sustainable Development, University of St. Andrews, St Andrews, KY16 9AL, UK
- D. Falaschi
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-Mendoza CONICET, Mendoza, 5500, Argentina
- C. Florentine
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, 59715, USA
- D. Floricioiu
- Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, 82234, Germany
- C. Ginzler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- G. Guillet
- Department of Geosciences, University of Oslo, Oslo, 0371, Norway
- R. Hugonnet
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- R. Hugonnet
- Civil and Environmental Engineering, University of Washington, Seattle, Washington, 98195-2700, USA
- R. Hugonnet
- Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Zürich, 8057, Switzerland
- M. Huss
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- M. Huss
- Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Zürich, 8057, Switzerland
- M. Huss
- Department of Geosciences, University of Fribourg, Fribourg, 1700, Switzerland
- A. Kääb
- Department of Geosciences, University of Oslo, Oslo, 0371, Norway
- O. King
- School of Geography, Politics and Sociology, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
- C. Klug
- Department of Geography, University of Innsbruck, Innsbruck, 6020, Austria
- F. Knuth
- Civil and Environmental Engineering, University of Washington, Seattle, Washington, 98195-2700, USA
- L. Krieger
- Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, 82234, Germany
- J. La Frenierre
- Department of Geography, Gustavus Adolphus College, St. Peter, Minnesota, 56082, USA
- R. McNabb
- School of Geography and Environmental Sciences, Ulster University, Coleraine, BT52 1SA, UK
- C. McNeil
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, 99508, USA
- R. Prinz
- Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, 6020, Austria
- L. Sass
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, 99508, USA
- T. Seehaus
- Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- D. Shean
- Civil and Environmental Engineering, University of Washington, Seattle, Washington, 98195-2700, USA
- D. Treichler
- Department of Geosciences, University of Oslo, Oslo, 0371, Norway
- A. Wendt
- Bavarian Academy of Sciences and Humanities, Geodesy and Glaciology, Munich, 80539, Germany
- R. Yang
- Department of Geosciences, University of Oslo, Oslo, 0371, Norway
- DOI
- https://doi.org/10.5194/tc-18-3195-2024
- Journal volume & issue
-
Vol. 18
pp. 3195 – 3230
Abstract
Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global scale. However, estimates from a growing number of studies show a wide range of results with differences often beyond uncertainty bounds. Here, we present the outcome of a community-based inter-comparison experiment using spaceborne optical stereo (ASTER) and synthetic aperture radar interferometry (TanDEM-X) data to estimate elevation changes for defined glaciers and target periods that pose different assessment challenges. Using provided or self-processed digital elevation models (DEMs) for five test sites, 12 research groups provided a total of 97 spaceborne elevation-change datasets using various processing approaches. Validation with airborne data showed that using an ensemble estimate is promising to reduce random errors from different instruments and processing methods but still requires a more comprehensive investigation and correction of systematic errors. We found that scene selection, DEM processing, and co-registration have the biggest impact on the results. Other processing steps, such as treating spatial data voids, differences in survey periods, or radar penetration, can still be important for individual cases. Future research should focus on testing different implementations of individual processing steps (e.g. co-registration) and addressing issues related to temporal corrections, radar penetration, glacier area changes, and density conversion. Finally, there is a clear need for our community to develop best practices, use open, reproducible software, and assess overall uncertainty to enhance inter-comparison and empower physical process insights across glacier elevation-change studies.