Agriculture (Nov 2024)
Study on the Extraction of Maize Phenological Stages Based on Multiple Spectral Index Time-Series Curves
Abstract
The advent of precision agriculture has highlighted the necessity for the careful determination of crop phenology at increasingly smaller scales. Although remote sensing technology is extensively employed for the monitoring of crop growth, the acquisition of high-precision phenological data continues to present a significant challenge. This study, conducted in Youyi County, Shuangyashan City, Heilongjiang Province, China, employed time-series spectral index data derived from Sentinel-2 remote sensing images to investigate methodologies for the extraction of pivotal phenological phases during the primary growth stages of maize. The data were subjected to Savitzky–Golay (S-G) filtering and cubic spline interpolation in order to denoise and smooth them. The combination of dynamic thresholding with slope characteristic node recognition enabled the successful extraction of the jointing and tasseling stages of maize. Furthermore, a comparison of the extraction of phenophases based on the time-series curves of the NDVI, EVI, GNDVI, OSAVI, and MSR was conducted. The results showed that maize exhibited different sensitivities to the spectral indices during the jointing and tasseling stages: the OSAVI demonstrated the highest accuracy for the jointing stage, with a mean absolute error of 3.91 days, representing a 24.8% improvement over the commonly used NDVI. For the tasseling stage, the MSR was the most accurate, achieving an absolute error of 4.87 days, with an 8.6% improvement compared to the NDVI. In this study, further analysis was conducted based on maize cultivation data from Youyi County (2021–2023). The results showed that the maize phenology in Youyi County in 2021 was more advanced compared to 2022 and 2023, primarily due to the higher average temperatures in 2021. This study provides valuable support for the development of precision agriculture and maize phenology monitoring and also provides a useful data reference for future agricultural management.
Keywords