Scientific Reports (Jun 2021)

Rapid manufacturing of micro-drilling devices using FFF-type 3D printing technology

  • Sangyeun Park,
  • Byeongjo Ko,
  • Heewon Lee,
  • Hongyun So

DOI
https://doi.org/10.1038/s41598-021-91149-8
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Micro-drilling devices with different blade shapes were fabricated with a rapid and facile manufacturing process using three-dimensional (3D) printing technology. The 3D-printed casting mold was utilized to customize the continuous shape of the blades without the need for expensive manufacturing tools. A computational fluid dynamics simulation was performed to estimate the pressure differences (fluidic resistance) around each rotating device in a flowing stream. Three types of blades (i.e., 45°, 0°, and helical type) were manufactured and compared to a device without blades (i.e., plain type). As a result, the device with the 45° blades exhibited the best drilling performance. At a rotational speed of 1000 rpm, the average drilling depth of the device with the 45° blades to penetrate artificial thrombus for 90 s was 3.64 mm, which was ~ 2.4 times longer than that of helical blades (1.51 mm). This study demonstrates the feasibility of using 3D printing to fabricate microscale drilling devices with sharp blades for various applications, such as in vivo microsurgery and clogged water supply tube maintenance.