Tropical Medicine and Health (Jul 2019)

Evaluation of the inhibitory effect of ivermectin on the growth of Babesia and Theileria parasites in vitro and in vivo

  • Gaber El-Saber Batiha,
  • Amani Magdy Beshbishy,
  • Dickson Stuart Tayebwa,
  • Oluyomi Stephen Adeyemi,
  • Naoaki Yokoyama,
  • Ikuo Igarashi

DOI
https://doi.org/10.1186/s41182-019-0171-8
Journal volume & issue
Vol. 47, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Treatment is the principle way to control and eliminate piroplasmosis. The search for new chemotherapy against Babesia and Theileria has become increasingly urgent due to parasite resistance to current drugs. Ivermectin (IVM) was the world’s first endectocide, capable of killing a wide variety of parasites and vectors, both inside and outside the body. It is currently authorized to treat onchocerciasis, lymphatic filariasis, strongyloidiasis, and scabies. The current study documented the efficacy of IVM on the growth of Babesia and Theileria in vitro and in vivo. Methods The fluorescence-based assay was used for evaluating the inhibitory effect of IVM on four Babesia species, including B. bovis, B. bigemina, B. divergens, B. caballi, and Theileria equi, the combination with diminazene aceturate (DA), clofazimine (CF), and atovaquone (AQ) on in vitro cultures, and on the multiplication of a B. microti-infected mouse model. The cytotoxicity of compounds was tested on Madin–Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3 T3), and human foreskin fibroblast (HFF) cell lines. Results The half-maximal inhibitory concentration (IC50) values determined for IVM against B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi were 53.3 ± 4.8, 98.6 ± 5.7, 30.1 ± 2.2, 43.7 ± 3.7, and 90.1 ± 8.1 μM, respectively. Toxicity assays on MDBK, NIH/3 T3, and HFF cell lines showed that IVM affected the viability of cells with a half-maximal effective concentration (EC50) of 138.9 ± 4.9, 283.8 ± 3.6, and 287.5 ± 7.6 μM, respectively. In the in vivo experiment, IVM, when administered intraperitoneally at 4 mg/kg, significantly (p < 0.05) inhibited the growth of B. microti in mice by 63%. Furthermore, combination therapies of IVM–DA, IVM–AQ, and IVM–CF at a half dose reduced the peak parasitemia of B. microti by 83.7%, 76.5%, and 74.4%, respectively. Moreover, this study confirmed the absence of B. microti DNA in groups treated with combination chemotherapy of IVM + DA and IVM + AQ 49 days after infection. Conclusions These findings suggest that IVM has the potential to be an alternative remedy for treating piroplasmosis.

Keywords