Remote Sensing (Mar 2016)

InSAR Detection and Field Evidence for Thermokarst after a Tundra Wildfire, Using ALOS-PALSAR

  • Go Iwahana,
  • Masao Uchida,
  • Lin Liu,
  • Wenyu Gong,
  • Franz J. Meyer,
  • Richard Guritz,
  • Tsutomu Yamanokuchi,
  • Larry Hinzman

DOI
https://doi.org/10.3390/rs8030218
Journal volume & issue
Vol. 8, no. 3
p. 218

Abstract

Read online

Thermokarst is the process of ground subsidence caused by either the thawing of ice-rich permafrost or the melting of massive ground ice. The consequences of permafrost degradation associated with thermokarst for surface ecology, landscape evolution, and hydrological processes have been of great scientific interest and social concern. Part of a tundra patch affected by wildfire in northern Alaska (27.5 km2) was investigated here, using remote sensing and in situ surveys to quantify and understand permafrost thaw dynamics after surface disturbances. A two-pass differential InSAR technique using L-band ALOS-PALSAR has been shown capable of capturing thermokarst subsidence triggered by a tundra fire at a spatial resolution of tens of meters, with supporting evidence from field data and optical satellite images. We have introduced a calibration procedure, comparing burned and unburned areas for InSAR subsidence signals, to remove the noise due to seasonal surface movement. In the first year after the fire, an average subsidence rate of 6.2 cm/year (vertical) was measured. Subsidence in the burned area continued over the following two years, with decreased rates. The mean rate of subsidence observed in our interferograms (from 24 July 2008 to 14 September 2010) was 3.3 cm/year, a value comparable to that estimated from field surveys at two plots on average (2.2 cm/year) for the six years after the fire. These results suggest that this InSAR-measured ground subsidence is caused by the development of thermokarst, a thawing process supported by surface change observations from high-resolution optical images and in situ ground level surveys.

Keywords