Toxins (Nov 2020)

Rumen and Serum Metabolomes in Response to Endophyte-Infected Tall Fescue Seed and Isoflavone Supplementation in Beef Steers

  • Taylor B. Ault-Seay,
  • Emily A. Melchior-Tiffany,
  • Brooke A. Clemmons,
  • Juan F. Cordero,
  • Gary E. Bates,
  • Michael D. Flythe,
  • James L. Klotz,
  • Huihua Ji,
  • Jack P. Goodman,
  • Kyle J. McLean,
  • Phillip R. Myer

DOI
https://doi.org/10.3390/toxins12120744
Journal volume & issue
Vol. 12, no. 12
p. 744

Abstract

Read online

Fescue toxicosis impacts beef cattle production via reductions in weight gain and muscle development. Isoflavone supplementation has displayed potential for mitigating these effects. The objective of the current study was to evaluate isoflavone supplementation with fescue seed consumption on rumen and serum metabolomes. Angus steers (n = 36) were allocated randomly in a 2 × 2 factorial arrangement of treatments including endophyte-infected (E+) or endophyte-free (E−) tall fescue seed, with (P+) or without (P−) isoflavones. Steers were provided a basal diet with fescue seed for 21 days, while isoflavones were orally administered daily. Following the trial, blood and rumen fluid were collected for metabolite analysis. Metabolites were extracted and then analyzed by UPLC-MS. The MAVEN program was implemented to identify metabolites for MetaboAnalyst 4.0 and SAS 9.4 statistical analysis. Seven differentially abundant metabolites were identified in serum by isoflavone treatment, and eleven metabolites in the rumen due to seed type (p p < 0.05). Therefore, metabolism was altered by fescue seed in the rumen; however, isoflavones altered metabolism systemically to potentially mitigate detrimental effects of seed and improve animal performance.

Keywords