IEEE Access (Jan 2024)

YOLO-RLDW: An Algorithm for Object Detection in Aerial Images Under Complex Backgrounds

  • Liangjun Zhao,
  • Gang Liang,
  • Yueming Hu,
  • Yubin Xi,
  • Feng Ning,
  • Zhongliang He

DOI
https://doi.org/10.1109/ACCESS.2024.3414620
Journal volume & issue
Vol. 12
pp. 128677 – 128693

Abstract

Read online

Aiming at the challenges of low detection accuracy, susceptibility to complex background interference, difficulty in detecting small objects, and multi-scale object issues in aerial images, our proposed an improved YOLOv8-based object detection algorithm, named YOLO-RLDW. Leveraging the advantages of Receptive Field Attention Convolution (RFAConv), we designed a feature extraction module named C2f-RFA to enhance the feature extraction capability for small objects in aerial images. Inspired by the concept of Large Separable Kernel Attention (LSKA), we developed the SPPF-LSKA module, which effectively reduces the interference of aerial backgrounds in object detection. We replaced the YOLOv8 detection head with a Dynamic Head (DyHead), further enhancing the model’s generalization and adaptability. Finally, we employed as boundary box regression loss based on a dynamic focusing mechanism, WIoU, as the loss function, which accelerates model convergence while improving the localization capability for multi-scale objects. Experimental results demonstrate that on the VisDrone2021 dataset, the proposed algorithm achieves improvements of 5.5%, 3.9%, 5.4%, and 3.7% in precision (P), recall (R), mean average precision (mAP50), and mAP95, respectively, compared to the original algorithm. On our self-built remote sensing image dataset RSI, the accuracy, recall, and mean average precision reach 94.2%, 91.0%, and 95.4%, respectively, demonstrating good performance in detecting objects in aerial images. Comparison with other mainstream object detection algorithms validates the effectiveness and superiority of the proposed method.

Keywords