PLoS ONE (Jan 2014)
Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya.
Abstract
Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal.Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters.The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period.All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions.