Photonics (May 2022)
All Optical Stabilizations of Nano-Structure-Based QDash Semiconductor Mode-Locked Lasers Based on Asymmetric Dual-Loop Optical Feedback Configurations
Abstract
We report feedback-induced frequency oscillations using a power-split-ratio through asymmetric dual-loop optical feedback (Loop I: ~2.2 km and Loop II: ~20 m) subject to a self-mode-locked two-section QDash laser emitting at 1550 nm and operating at 21 GHz repetition rate. To assess the suppression of frequency resonances, three chosen combinations of feedback power (Loop I: −27.27 dB and Loop II: −19.74 dB, Loop I: −22 dB and Loop II: −22 dB, and Loop I: −19.74 dB and Loop II: −27.27 dB) through asymmetric dual-loop optical feedback have been studied. Based on the chosen coupling strength, an optimum feedback ratio that yields better side-mode suppression has been identified. Our results demonstrate that side-mode suppression can be achieved by the fine adjustment of coupling power through either cavity of dual-loop feedback configurations. Furthermore, we have further demonstrated that frequency fluctuations from the RF spectra can be filtered by carefully selecting the delay phase of the second cavity. Our experimental findings suggest that semiconductor mode-locked lasers based on dual-loop feedback configurations can be used to develop noise oscillations free from integrated photonic oscillators for potential applications in telecommunications, multiplexing, and frequency-comb generation.
Keywords