Atmosphere (Sep 2024)

Study on Downscaling Correction of Near-Surface Wind Speed Grid Forecasts in Complex Terrain

  • Xin Liu,
  • Zhimin Li,
  • Yanbo Shen

DOI
https://doi.org/10.3390/atmos15091090
Journal volume & issue
Vol. 15, no. 9
p. 1090

Abstract

Read online

Accurate forecasting of wind speeds is a crucial aspect of providing fine-scale professional meteorological services (such as wind energy generation and transportation operations etc.). This article utilizes CMA-MESO model forecast data and CARAS-SUR_1 km ground truth grid data from January, April, July, and October 2022, employing the random forest algorithm to establish and evaluate a downscaling correction model for near-surface 1 km resolution wind-speed grid forecast in the complex terrain area of northwestern Hebei Province. The results indicate that after downscaling correction, the spatial distribution of grid forecast wind speeds in the entire complex terrain study area becomes more refined, with spatial resolution improving from 3 km to 1 km, reflecting fine-scale terrain effects. The accuracy of the corrected wind speed forecast significantly improves compared to the original model, with forecast errors showing stability in both time and space. The mean bias decreases from 2.25 m/s to 0.02 m/s, and the root mean square error (RMSE) decreases from 3.26 m/s to 0.52 m/s. Forecast errors caused by complex terrain, forecast lead time, and seasonal factors are significantly reduced. In terms of wind speed categories, the correction significantly improves forecasts for wind speeds below 8 m/s, with RMSE decreasing from 2.02 m/s to 0.59 m/s. For wind speeds above 8 m/s, there is also a good correction effect, with RMSE decreasing from 2.20 m/s to 1.65 m/s. Selecting the analysis of the Zhangjiakou strong wind process on 26 April 2022, it was found that the downscaled corrected forecast wind speed is very close to the observed wind speed at the station and the ground truth grid points. The correction effect is particularly significant in areas affected by strong winds, such as the Bashang Plateau and valleys, which has significant reference value.

Keywords