Inorganics (May 2022)

Zinc(II) Complexes with Dimethyl 2,2′-Bipyridine-4,5-dicarboxylate: Structure, Antimicrobial Activity and DNA/BSA Binding Study

  • Tina P. Andrejević,
  • Ivana Aleksic,
  • Jakob Kljun,
  • Bojana V. Pantović,
  • Dusan Milivojevic,
  • Sandra Vojnovic,
  • Iztok Turel,
  • Miloš I. Djuran,
  • Biljana Đ. Glišić

DOI
https://doi.org/10.3390/inorganics10060071
Journal volume & issue
Vol. 10, no. 6
p. 71

Abstract

Read online

Two zinc(II) complexes with dimethyl 2,2′-bipyridine-4,5-dicarboxylate (py-2py) of the general formula [Zn(py-2py)X2], X = Cl− (1) and Br− (2) were synthesized and characterized by NMR, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction analysis. Complexes 1 and 2 are isostructural and adopt a slightly distorted tetrahedral geometry with values of tetrahedral indices τ4 and τ’4 in the range of 0.80–0.85. The complexes were evaluated for their in vitro antimicrobial activity against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two fungal strains (Candida albicans and Candida parapsilosis), while their cytotoxicity was tested on the normal human lung fibroblast cell line (MRC-5) and the model organism Caenorhabditis elegans. Complex 1 showed moderate activity against both Candida strains. However, this complex was twofold more cytotoxic compared to complex 2. The complexes tested had no effect on the survival rate of C. elegans. Complex 2 showed the ability to inhibit filamentation of C. albicans, while complex 1 was more effective than complex 2 in inhibiting biofilm formation. The interactions of complexes 1 and 2 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) were studied to evaluate their binding affinity toward these biomolecules.

Keywords