Remote Sensing (Apr 2018)

Studying Ionosphere Responses to a Geomagnetic Storm in June 2015 with Multi-Constellation Observations

  • Yang Liu,
  • Lianjie Fu,
  • Jinling Wang,
  • Chunxi Zhang

DOI
https://doi.org/10.3390/rs10050666
Journal volume & issue
Vol. 10, no. 5
p. 666

Abstract

Read online

The Global Navigation Satellite System (GNSS) observations with global coverage and high temporal and spatial resolution, provide abundant and high-quality Earth-ionosphere observations. By calculating the total electron content (TEC), estimations from GNSS observables global and regional ionosphere TEC morphology can be further investigated. For the multiple constellation case, the numbers of ionosphere pierce points (IPP) has increased tremendously, and it is worth studying the features of the GNSS derived TEC under geomagnetic storms to show the benefits of multiple constellation measurements. With the Multi-GNSS Experiment (MGEX) observation data, ionosphere TEC responses to the geomagnetic storm on the 22 June 2015 were well studied. TEC perturbations were discovered, accompanied by ionosphere irregularities concentrating in high and middle latitudes. Through analysis of multi-GNSS observations, the Rate of TEC Index (ROTI) perturbations were proved to be generated by the geomagnetic storm, with simultaneous behaviors at different local times around the world, also indicating ionosphere scintillation. The ionosphere spatial gradient was also discussed with two short baseline MGEX sites; the maximum ionosphere gradient of 247.2 mm/km was found, due to ionosphere irregularity produced by the storm. This research has discussed ionosphere responses to geomagnetic storms with multi-GNSS data provided and has analyzed the availability of multi-GNSS observations to investigate ionosphere irregularity climatology. The proposed work is valuable for further investigation of GNSS performances under geomagnetic storms.

Keywords