BMC Chemistry (Jul 2020)

Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases

  • Maria Marinescu,
  • Ludmila Otilia Cinteză,
  • George Iuliu Marton,
  • Mariana-Carmen Chifiriuc,
  • Marcela Popa,
  • Ioana Stănculescu,
  • Christina-Marie Zălaru,
  • Cristina-Elena Stavarache

DOI
https://doi.org/10.1186/s13065-020-00697-z
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 16

Abstract

Read online

Abstract The tri-component synthesis of novel chiral benzimidazole Mannich bases, by reaction between benzimidazole, aqueous 30% formaldehyde and an amine, the biological evaluation and DFT studies of the new compounds are reported here. The 1H-NMR, 13C-NMR, FTIR spectra and elemental analysis confirm the structures of the new compounds. All synthesized compounds were screened by qualitative and quantitative methods for their in vitro antibacterial activity against 4 bacterial strains. DFT studies were accomplished using GAMESS 2012 software and HOMO–LUMO analysis allowed the calculation of electronic and structural parameters of the chiral Mannich bases. The geometry of 1-methylpiperazine, the cumulated Mullikan atomic charges of the two heteroatoms and of the methyl, and the value of the global electrophilicity index (ω = 0.0527) of the M-1 molecule is correlated with its good antimicrobial activity. It was found that the presence of saturated heterocycles from the amine molecule, 1-methyl piperazine and morpholine, respectively, contributes to an increased biological activity, compared to aromatic amino analogs, diphenylamino-, 4-nitroamino- and 4-aminobenzoic acid. The planarity of the molecules, specific bond lengths and localization of HOMO–LUMO orbitals is responsible for the best biological activities of the compounds.

Keywords