Pesquisa Agropecuária Tropical (Dec 2013)
Soil inorganic nitrogen content according to cover crops, nitrogen sources and nitrification inhibitor
Abstract
The use of cover crops can change the soil NO3-: NH4+ ratio, providing larger amounts of NH4+, and enable the development of crops which absorb more or prefer this form of nitrogen (N), like rice. This study aimed at evaluating the effect of the interaction of cover crops and N sources, with and without nitrification inhibitor (dicyandiamide), under no-tillage system (NTS). The experiment was carried out in 2009/2010, in Botucatu, São Paulo State, Brazil, in an Oxisol under NTS for six years. The experimental design was randomized blocks, arranged in a split plot, with four replications. The plots consisted of six cover crops species (Urochloa brizantha, U. decumbens, U. humidicola, U. ruziziensis, Pennisetum americanum and Crotalaria spectabilis) and the split plots were seven forms of nitrogen fertilization, at 0 and 30 days after the emergence (DAE) of rice [1 - control, without N fertilization; 2 - calcium nitrate (40 + 40 kg ha-1); 3 - calcium nitrate (0 + 80 kg ha-1); 4 - ammonium sulfate (40 + 40 kgha-1); 5 - ammonium sulfate (0 + 80 kg ha-1); 6 - ammonium sulfate + dicyandiamide (40 + 40 kg ha-1); and 7 - ammonium sulfate + dicyandiamide (0 + 80 kg ha-1)]. The use of nitrification inhibitor and the C. spectabilis cover crop resulted in higher levels of ammonium in the soil. The application of the ammonium source without nitrification inhibitor in a total dose at 30 DAE and with inhibitor (split or total dose) resulted in the highest levels of nitrate in the soil.
Keywords