Sensors (Sep 2020)

VI-Net—View-Invariant Quality of Human Movement Assessment

  • Faegheh Sardari,
  • Adeline Paiement,
  • Sion Hannuna,
  • Majid Mirmehdi

DOI
https://doi.org/10.3390/s20185258
Journal volume & issue
Vol. 20, no. 18
p. 5258

Abstract

Read online

We propose a view-invariant method towards the assessment of the quality of human movements which does not rely on skeleton data. Our end-to-end convolutional neural network consists of two stages, where at first a view-invariant trajectory descriptor for each body joint is generated from RGB images, and then the collection of trajectories for all joints are processed by an adapted, pre-trained 2D convolutional neural network (CNN) (e.g., VGG-19 or ResNeXt-50) to learn the relationship amongst the different body parts and deliver a score for the movement quality. We release the only publicly-available, multi-view, non-skeleton, non-mocap, rehabilitation movement dataset (QMAR), and provide results for both cross-subject and cross-view scenarios on this dataset. We show that VI-Net achieves average rank correlation of 0.66 on cross-subject and 0.65 on unseen views when trained on only two views. We also evaluate the proposed method on the single-view rehabilitation dataset KIMORE and obtain 0.66 rank correlation against a baseline of 0.62.

Keywords