IEEE Photonics Journal (Jan 2022)

Digital Domain Power Division Multiplexing Optical OFDM for Free Space Optical Communication (FSOC) Using 10-GHz Bandwidth Optical Components

  • Wahyu Hendra Gunawan,
  • Chi-Wai Chow,
  • Yang Liu,
  • Yun-Han Chang,
  • Yin-He Jian,
  • Ching-Wei Peng,
  • Chien-Hung Yeh

DOI
https://doi.org/10.1109/JPHOT.2022.3182867
Journal volume & issue
Vol. 14, no. 4
pp. 1 – 7

Abstract

Read online

We put forward and provide the first illustration of a high capacity and high spectral efficient free space optical communication (FSOC) system using digital domain power division multiplexing orthogonal-frequency-division-multiplexed (DDPD-O-OFDM) signal utilizing 10-GHz class optical components. In the proof-of-concept demonstration, a data rate of 2 × 30.8 Gbit/s can be achieved for each polarization multiplexed wavelength channel, fulfilling the pre-forward-error-correction bit-error-ratio (pre-FEC BER = 3.8 × 10−3). By employing the DDPD-O-OFDM here, the FSOC per channel capacity can be enhanced not only allowing the spectral overlapping of different orthogonal subcarriers, as in the case of OFDM; but also allowing channel multiplexing in the power domain to increase the spectral efficiency. The principle of DDPD-O-OFDM is discussed; and BER and signal-to-noise ratio (SNR) of different DDPD channels are experimentally measured.

Keywords