Journal of Information Technology Management (Mar 2022)
Detection of Wormhole Attack in Vehicular Ad-hoc Network over Real Map using Machine Learning Approach with Preventive Scheme
Abstract
VANET (Vehicular Ad-hoc Network) is a developing technology, which is a combination of cellular technology, ad-hoc network & wireless LAN to improve the safety of vehicle as well as driver. VANET communication can be of two types, first one is broadcast and second one is unicast. Either communication may be broadcast or unicast both are sensitive to different types ofassaults, for example message forgery, (DOS) denial of service, Sybil assault, Greyhole, Blackhole & Wormhole assault. In this paper machine learning method is used to detect the wormhole assault in VANET’s multi-hop communication. We have created a scenario of VANET by using AODV routing protocol on NS-3.24.1 simulator, which utilizes the overall mobility traces generated by the simulator SUMO-0.32.0 to model the wormhole assault. The simulation is performed by using NS-3.24.1 simulator, and the statistics created by flow monitor are collected. The collected data is pre-processed and the k-NN & Random Forest algorithms are applied on this data, to make the model such type so that it can memorize the wormhole attack. The novelty of this research work is that with the help of proposed detection & prevention technique, vehicular ad-hoc network can be made free from wormhole assault by using ML approach. The performance of proposed machine learning models is compared with existing work. In this way it is clear that our proposed approach by using ML is powerful tool by which the wormhole assaults can be detected in VANETs. A scheme based on packet lease and cryptographic techniques is used to prevent the wormhole attack in VANET
Keywords