Journal of Advanced Transportation (Jan 2023)

Risk Assessment and Enhancement Suggestions for Automated Driving Systems through Examining Testing Collision and Disengagement Reports

  • Kuo-Wei Wu,
  • Wen-Fang Wu,
  • Chung-Chih Liao,
  • Wei-Ann Lin

DOI
https://doi.org/10.1155/2023/3215817
Journal volume & issue
Vol. 2023

Abstract

Read online

The California Department of Motor Vehicles (DMV) reports, including disengagement and collision reports, provide information on each accident or disengagement activity for on-road testing of autonomous driving systems (ADSs) and autonomous vehicles (AVs). Unfortunately, current DMV reports have been misleading in relation to many key details, making it challenging for readers of those reports to discern the events’ root causes and interrelationships. Therefore, appropriate systematic classification methods and principles need to be adopted. We follow an identification method similar to fault tree analysis (FTA) with the help of the driving reliability and error analysis method (DREAM 3.0) and the Haddon matrix to find the potential key accident factors from all disengagement data. We also conduct ADS risk assessments of potential disengagements and genuine accidents classified by traditional accident types. In addition, the automated driving system is composed of various software modules, and a classification method that is suitable from the standpoint of ADS software developers is developed in this paper. Next, we sort out the characteristics of the most frequent accidents based on the risk assessment results. Finally, we propose a workable risk reduction solution according to the characteristics of accidents.