Applied Sciences (Sep 2024)

Sequence-Information Recognition Method Based on Integrated mDTW

  • Boliang Sun,
  • Chao Chen

DOI
https://doi.org/10.3390/app14198716
Journal volume & issue
Vol. 14, no. 19
p. 8716

Abstract

Read online

In the fields of machine learning and artificial intelligence, the processing of time-series data has been a continuous concern and a significant algorithm for intelligent applications. Traditional deep-learning-based methods seem to have reached performance ceilings in certain specific areas, such as online character recognition. This paper proposes an algorithmic framework to break this deadlock by classifying time-series data by evaluating the similarities among handwriting samples using multidimensional Dynamic Time Warping (mDTW) distances. A simplified hierarchical clustering algorithm is employed as a classifier for character recognition. Moreover, this work achieves joint modeling with current mainstream temporal models, enabling the mDTW model to integrate modeling results from methods like RNN or Transformer, therefore further enhancing the accuracy of related algorithms. A series of experiments were conducted on a public database, and the results indicate that our method overcomes the bottleneck of current deep-learning-based methods in the field of online handwriting character recognition. More importantly, compared to deep -learning-based methods, the proposed method has a simpler structure and higher interpretability. Experimental results demonstrate that our proposed method outperforms existing state-of-the-art models in handwriting character recognition, achieving a top-1 accuracy of 98.5% and a top-3 accuracy of 99.3%, thus confirming its effectiveness in overcoming the limitations of traditional deep-learning models in temporal sequence processing.

Keywords