Polymers (Aug 2023)

Enhancing Char Formation and Flame Retardancy of Ethylene-Vinyl Acetate Copolymer (EVA)/Aluminum Hydroxide (ATH) Composites by Grafting Ladder Phenyl/Vinyl Polysilsesquioxane (PhVPOSS)

  • Fa Hu,
  • Bo Cheng,
  • Kun Cong,
  • Dinghua Li,
  • Wenchao Zhang,
  • Zhaolu Qin,
  • Rongjie Yang

DOI
https://doi.org/10.3390/polym15153312
Journal volume & issue
Vol. 15, no. 15
p. 3312

Abstract

Read online

The ladder phenyl/vinyl polysilsesquioxane (PhVPOSS) was used to improve the flame-retardancy performances of ethylene-vinyl acetate copolymer (EVA)/aluminum hydroxide (ATH) composites due to the reactivity of its vinyl groups. FTIR, XPS, 1H NMR, and SEM-EDS data demonstrated the PhVPOSS grafting onto EVA molecular chains. The PhVPOSS improved the thermal stability of EVA/ATH composites, as shown by the thermogravimetric analysis (TGA). Furthermore, with the cone calorimeter (CONE) experiments, EVA/ATH/PhVPOSS showed better fire safety than the EVA/ATH composites, with the PHRR, PSPR, and PCOP reduced by 7.89%, 57.4%, and 90.9%, respectively. The mechanism investigations of flame retardancy revealed that the charring behaviors of the EVA/ATH/PhVPOSS composites were improved by the formation of Si-C bonds and Si-O bonds, and a more compact and denser char layer can contribute more to the barrier effect.

Keywords